

Impact of CRISPR–Cas9 on Plant Biology

Salman Khan*, **Saumya Dubey**,
Tanvi Tripathi, **Avinash Pratap**
Singh

Microbiology and Plant Pathology Laboratory,
 Department of Botany,
 C.M.P. Degree College, University of Allahabad,
 Prayagraj-211002, India
 Email: ksalman515au@gmail.com

CRISPR-Cas9 technology has changed molecular biology by enabling precise and efficient gene editing. Although its applications in human health have received significant attention, the influence on plant biology cannot be overlooked. CRISPR-Cas9 has the ability to transform agriculture and plant science, improving crop resilience and addressing environmental issues (Rasheed et al., 2021; Liu et al., 2017). CRISPR-Cas9 technology is among the most exciting and promising applications in biology. CRISPR Cas9, derived from the bacterial immune system, has revolutionary genome editing with unusual accuracy, efficiency, and variety. Extensive research has focused on its applications in human health and illness, but its influence on plant biology is also significant. This introduction explains the significance of CRISPR- Cas9 technology in plant biology (Schaeffer et al., 2016). This breakthrough technique is crucial for understanding plant genomes, enhancing crop traits, and solving agricultural and environmental concerns. Plant biology addresses global concerns such as feeding a growing population and reducing the impact of climate change on agricultural output. CRISPR/Cas9 is a promising tool for unlocking the genetic potential of plants and revolutionizing agriculture. The introduction will cover the fundamentals of CRISPR-Cas9 technology, including its mechanisms and applications in plant research and agricultural enhancement. This article will discuss the problems and ethical issues of using CRISPR-Cas9 in plant biology, highlighting the importance of responsible and fair deployment. Our examination of CRISPR-Cas9 technology and its influence on plant biology highlights a new age in agriculture, driven by creativity, resilience, and sustainability. Collaboration among scientists and

stakeholders can unlock the full potential of CRISPR-Cas9 to solve global issues and create a more resilient and food-secure future (Deb et al., 2022).

Keywords: CRISPR–Cas9; plant biology; crop improvement; nutritional enhancement

Understanding CRISPR-Cas9

CRISPR-Cas9, or Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR- associated Protein 9, is a genome-editing technique developed from the bacterial immune system (Borrelli et al., 2018). Researchers can change specific DNA sequences inside an organism's genome. The mechanism has two essential components: the Cas9 protein, which functions as a molecular scissors, and a guide RNA (gRNA), which leads Cas9 to the target DNA sequence. The CRISPR-Cas9 revolution relies on sophisticated molecular machinery to precisely manipulate genomes. Understanding CRISPR-Cas9 is essential for recognizing its significant influence on plant biology and agriculture.

The Bacterial Defense Mechanism of the CRISPR-Cas9 System

CRISPR-Cas9 is a defensive mechanism against viral invaders, first found in the bacterial immune system. Bacteria create CRISPR arrays by incorporating viral DNA into their genetic material. These arrays, with short, repeated sequences, act as a biological memory of previous viral infections (Noman et al., 2016). 4. Targeted Genome Editing with CRISPR-Cas9 The CRISPR-Cas9 system involves a complex interaction of molecular components. The Cas9 protein is an endonuclease that cuts DNA at specific target sites. Cas9 is guided to its target by a synthetic molecule called single-guide RNA (sgRNA), which complements the desired DNA sequence (El-Maunadi et al., 2020). CRISPR/Cas9 technology is used to increase agricultural

performance and resilience in four areas: genetic improvement, nutrient efficiency, biomass output, and disease resistance (Rasheed et al., 2021).

Genetic Improvement

CRISPR/Cas9 allows for precise genetic alterations to crop genomes, allowing researchers to target particular genes linked with desirable features. This might include qualities like as crop potential, drought tolerance, and labor profiles. By modifying these genes, scientists may regulate the breeding process and create crop types with enhanced features.

Increasing Nutrient Use Efficiency

Efficient fertilizer usage is vital for sustainable agriculture since it impacts crop nutrient absorption and use. CRISPR/Cas9 technology can change genes involved in nutrient absorption, transport, and metabolism, allowing plants to better use available nutrients in soil. This can improve nitrogen absorption, minimize fertilizer use, and increase crop output.

Boosting Biomass Production

Agriculture relies heavily on biomass production for biofuel, livestock feed, and fiber supplies. Researchers enable CRISPR/Cas9 to target genes affecting plant architecture, biomass accumulation, and photosynthetic efficiency. Optimizing agricultural features by genome editing can enhance biomass yields per input, resulting in higher resource efficiency and productivity.

Improve Disease Resistance

Epidemic outbreaks are a significant danger to agricultural productivity and food security globally. CRISPR/Cas9 technology can improve agricultural disease resistance by focusing on genes that are susceptible and adding resistance genes from other

Published online: 01 February 2026

plant species. CRISPR/Cas9-mediated crop resistance can minimize output losses and reduce the use of chemical pesticides, leading to more sustainable farming practices. There are various uses of CRISPR/Cas9 technology in agricultural development, including genetic enhancement, nutrient consumption, biomass output, and disease resistance. Researchers can resolve agricultural issues and create resilient crop types for sustainable food production in the face of economic and environmental obstacles by using genome editing techniques like CRISPR/Cas9 (Soda et al., 2018).

Mechanism of Action: Precision and Efficiency

The Cas9 protein and sgRNA combination causes a sequence-specific cleavage, resulting in a double-strand break (DSB) in the DNA. The DSB stimulates the cell's inherent repair processes, which may include gene deletion, insertion of new genetic material, or exact nucleotide replacement. CRISPR-Cas9's flexibility allows for several applications in plant biology (Tyagi et al., 2021). Crops may now be engineered with better features, including stress tolerance, disease resistance, and nutritional content. CRISPR Cas9 allows for the study of regulatory networks and gene function, providing insights into environmental reactions, plant growth, and development. Although CRISPR-Cas9 is highly precise, it has limits. Off-target effects, which occur when unexpected genetic modifications happen at similar locations to the target sequence, significantly limit its effectiveness. Ongoing research tries to decrease off-target effects by optimizing sgRNA design and Cas9 variations (Zhang et al., 2020). Genome editing has ethical concerns for environmental conservation and agricultural biotechnology, which must be carefully considered. CRISPR-Cas9 technology, which allows for precise and efficient manipulation of plant genomes, raises concerns about ecological impact, biosafety, and equitable access to genetic resources (Mahfouz et al., 2014; Li et al., 2021; Rao et al., 2021). Plant biology applications are numerous and transformational, ranging from improving crop resilience to understanding gene function. Researchers may use CRISPR-Cas9 to address global food security issues and create a more sustainable agricultural future by negotiating the ethical issues of genome editing.

Applications in Plant Biology

Crop Improvement

CRISPR-Cas9 has significant uses in plant biology, particularly for agricultural enhancement. Researchers can boost crop features by targeting specific genes related to yield, stress tolerance, and disease resistance (Schindelé et al., 2018). Scientists have utilized CRISPR-Cas9 to create pest, and disease-resistant crops, promoting sustainable agriculture and reducing the demand for toxic pesticides (Zess et al., 2021).

Nutritional Enhancement

CRISPR-Cas9 technology can enhance the nutritional value of crops. Researchers can improve crops by changing genes involved in nutrient absorption and synthesis, resulting in increased amounts of important vitamins and minerals. This has the potential to eliminate hunger and food insecurity in many regions of the world (Wada et al., 2020).

Environmental Adaptation

Climate change creates important problems for global agriculture, influencing crop output and distribution. CRISPR-Cas9 allows researchers to create crops that respond to changing environmental circumstances, including drought, heat, and salt. Scientists can improve food security in the face of climate change by discovering and altering genes responsible for stress response pathways (Das et al., 2019).

Bioremediation

CRISPR-Cas9 technology has potential for both agricultural and environmental remedial applications. Plants can absorb and detoxify toxins, helping to clean up polluted areas. Phytoremediation uses plant's inherent capacity to digest and sequester harmful chemicals with the help of CRISPER-Cas9 (Schiml et al., 2016).

Challenges and Considerations

Although CRISPR-Cas9 has great promise to advance plant biology, ethical and regulatory concerns must be addressed. The

safety of genetically modified organisms (GMOs), possible environmental implications, and fair access to gene editing technologies demand serious scrutiny and public conversation (Bao et al., 2016 & 2019; Ding et al., 2016; Karlson et al., 2021). Off-target consequences of CRISPR-Cas9, resulting in unexpected modifications elsewhere in the genome, are still a problem. To ensure safety and effectiveness, current research aims to increase the specificity of gene editing techniques and minimize off-target effects.

Conclusion

CRISPR-Cas9 technology can enhance our knowledge of plant biology and address global agricultural problems. It has several applications, including boosting crop resilience and nutritional content and reducing climate change. Researchers may use CRISPR-Cas9 to create a sustainable and resilient food system by adhering to ethical and regulatory guidelines. CRISPR-Cas9 technology is a game-changer in plant biology and agriculture, bringing together science, innovation, and opportunity. After exploring CRISPR-Cas9's influence on plant biology, it's clear that this revolutionary technique has the potential to address global concerns. CRISPR-Cas9 genome editing provides a more effective strategy to modify crops than traditional breeding methods. Researchers can improve crop tolerance to diseases, pests, and environmental stresses by targeting specific genes linked to desirable characteristics. CRISPR- Cas9 technology can modify the nutritional content of crops, address hunger, and improve human health globally. CRISPR-Cas9 not only enhances crops but also sheds light on how plants grow, develop, and adapt. Studying gene activity and regulatory networks can help researchers understand plant biology and provide novel solutions to agricultural concerns. However, there are challenges in fully using CRISPR-Cas9. Responsible management of this breakthrough technology is crucial due to ethical, regulatory, and environmental issues. To negotiate the intricacies of genome editing, it is crucial to promote inclusive discourse and collaboration among scientists, farmers, and consumers. Engaging different stakeholders ensures equitable distribution of benefits and alignment with sustainability and social responsibility principles for CRISPR-Cas9 applications. A more versatile, equitable, and sustainable future in agriculture and food security is possible.

with the help of CRISPR/Cas9 technology. Future generations may live in a world where communities succeed, plants flourish, and our planet flourishes if we use CRISPR/Cas9 wisely and strategically.

Received: 10 October 2025 **Revised:**
Accepted: 17 December 2025 **Published:** 31 January 2026

References

Bao, A., Burritt, D. J., Chen, H., Zhou, X., Cao, D., and Tran, L. S. P. (2019). The CRISPR/Cas9 system and its applications in crop genome editing. *Critical Reviews in Biotechnology*, 39(3), 321–336.

Bao, A., Chen, H., Chen, L., Chen, S., Hao, Q., Guo, W., and Cao, D. (2019). CRISPR/Cas9-mediated targeted mutagenesis of *GmSPL9* genes alters plant architecture in soybean. *BMC Plant Biology*, 19(1), 1–12.

Borrelli, V. M., Brambilla, V., Rogowsky, P., Marocco, A., and Lanubile, A. (2018). The enhancement of plant disease resistance using CRISPR/Cas9 technology. *Frontiers in Plant Science*, 9, 1245.

Das, A., Sharma, N., and Prasad, M. (2019). CRISPR/Cas9: a novel weapon in the arsenal to combat plant diseases. *Frontiers in Plant Science*, 9, 2008.

Deb, S., Choudhury, A., Kharbyngar, B., and Satyawada, R. R. (2022). Applications of CRISPR/Cas9 technology for modification of the plant genome. *Genetica*, 1–12.

Ding, Y., Li, H., Chen, L. L., and Xie, K. (2016). Recent advances in genome editing using CRISPR/Cas9. *Frontiers in Plant Science*, 7, 703.

El-Mounadi, K., Morales-Floriano, M. L., and Garcia-Ruiz, H. (2020). Principles, applications, and biosafety of plant genome editing using CRISPR-Cas9. *Frontiers in Plant Science*, 11, 56.

Karlson, C. K. S., Mohd-Noor, S. N., Nolte, N., and Tan, B. C. (2021). CRISPR/dCas9-based systems: mechanisms and applications in plant sciences. *Plants*, 10(10), 2055.

Liu, X., Wu, S., Xu, J., Sui, C., and Wei, J. (2017). Application of CRISPR/Cas9 in plant biology. *Acta Pharmaceutica Sinica B*, 7(3), 292–302.

Li, Y., Li, W., and Li, J. (2021). The CRISPR/Cas9 revolution continues: from base editing to prime editing in plant science. *Journal of Genetics and Genomics*, 48(8), 661–670.

Mahfouz, M. M., Piatek, A., and Stewart Jr., C. N. (2014). Genome engineering via TALENs and CRISPR/Cas9 systems: challenges and perspectives. *Plant Biotechnology Journal*, 12(8), 1006–1014.

Noman, A., Aqeel, M., and He, S. (2016). CRISPR-Cas9: tool for qualitative and quantitative plant genome editing. *Frontiers in Plant Science*, 7, 1740.

Rao, M. J., and Wang, L. (2021). CRISPR/Cas9 technology for improving agronomic traits and future prospects in agriculture. *Planta*, 254, 1–16.

Rasheed, A., Gill, R. A., Hassan, M. U., Mahmood, A., Qari, S., Zaman, Q. U., Ilyas, M., Aamer, M., Batool, M., Li, H., et al. (2021). A critical review: recent advancements in the use of CRISPR/Cas9 technology to enhance crops and alleviate global food crises. *Current Issues in Molecular Biology*, 43, 1950–1976. doi:10.3390/cimb43030135

Schaeffer, S. M., and Nakata, P. A. (2016). The expanding footprint of CRISPR/Cas9 in the plant sciences. *Plant Cell Reports*, 35(7), 1451–1468.

Schiml, S., and Puchta, H. (2016). Revolutionizing plant biology: multiple ways of genome engineering by CRISPR/Cas. *Plant Methods*, 12(1), 1–9.

Schindele, P., Wolter, F., and Puchta, H. (2018). Transforming plant biology and breeding with CRISPR/Cas9, Cas12 and Cas13. *FEBS Letters*, 592(12), 1954–1967.

Soda, N., Verma, L., and Giri, J. (2018). CRISPR-Cas9 based plant genome editing: significance, opportunities and recent advances. *Plant Physiology and Biochemistry*, 131, 2–11.

Tyagi, S., Kumar, R., Kumar, V., Won, S. Y., and Shukla, P. (2021). Engineering disease-resistant plants through CRISPR-Cas9 technology. *GM Crops & Food*, 12(1), 125–144.

Wada, N., Ueta, R., Osakabe, Y., and Osakabe, K. (2020). Precision genome editing in plants: state-of-the-art in CRISPR/Cas9-based genome engineering. *BMC Plant Biology*, 20, 1–12.

This article is published under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published online: 01 February 2026